This is BCE\#25.

I recommend you print out this page and bring it to class. Click here to show a set of five BCE25 student responses randomly selected from all of the student responses thus far in a new window.

John, here are your responses to the BCE and the Expert's response.

1. Calculate the pH of a 500 mL solution containing $0.250 \mathrm{M} \mathrm{NH}_{3}$ and 0.300 M $\mathrm{NH}_{4} \mathrm{NO}_{3} . \mathrm{K}_{\mathrm{b}}$ for NH_{3} is $\mathbf{1 . 8} \times \mathbf{1 0}^{-5}$.
12% pH $=4.8$
9.18 56%
$\left.\begin{array}{|c|c|c|c|c|c|}\hline \begin{array}{c}\mathrm{NH}_{3}(\mathrm{aq}) \\ +\end{array} & \mathrm{H}_{2} \mathrm{O}(\mathrm{l}) \\ \hline\end{array}\right)$
$K_{b}=\left[\mathrm{NH}_{4}{ }^{+}\right]\left[\mathrm{OH}^{-}\right] /\left[\mathrm{NH}_{3}\right]$
$1.75 \times 10^{-5}=[0.300+x][x] /[0.250-x]$
assume $0.250-\mathrm{x}=\mathbf{0 . 2 5 0}$
$1.75 \times 10^{-5}=[0.300][x] /[0.250]$
$1.46 \times 10^{-5}=[\mathrm{x}]=\left[\mathrm{OH}^{-}\right]$
The pOH of the solution is 4.84 , so the pH is $14-4.84=9.16$.
b) Calculate the moles of NH_{3} and $\mathrm{NH}_{4}{ }^{+}$in the solution.
moles of $\mathbf{N H}_{\mathbf{3}}=\mathbf{0 . 1 2 5}$ moles
$0.500 \mathrm{~L}\left(0.250\right.$ mole $\left.\mathrm{NH}_{3} / 1 \mathrm{~L}\right)=0.125$ mole NH_{3}
moles of $\mathrm{NH}_{4}{ }^{+}=0.15$ moles $\quad 75 \%$
$0.500 \mathrm{~L}\left(0.300\right.$ mole $\left.\mathrm{NH}_{3} / \mathbf{1 L}\right)=0.150$ mole $\mathrm{NH}_{4}{ }^{+}$
c) 0.00500 moles of $\mathbf{H C l}$ are added to the solution in Q1. After the addition, calculate the moles of NH_{3} and $\mathrm{NH}_{4}{ }^{+}$in the solution.
moles of $\mathrm{NH}_{3}=0.12$ moles $\quad 62 \%$
Since HCl reacts with NH_{3} according to the reaction.

	$\mathrm{NH}_{3}(\mathrm{aq})+$	$\mathrm{H}+(\mathrm{aq})$	\rightleftarrows	$\mathrm{NH}_{4}{ }^{+}(\mathrm{aq})+$
I	$\mathbf{0 . 1 2 5}$ moles	0.005 moles		0.150 moles
C	$-\mathbf{0 . 0 0 5}$ moles	-0.005 moles		+0.005 moles
E	$-\mathbf{0 . 1 2 0}$ moles	0 moles		0.155 moles

0.120 mole NH_{3} after addition of the HCl moles of $\mathbf{N H}_{\mathbf{4}}{ }^{\boldsymbol{+}} \boldsymbol{=} \mathbf{0 . 1 5 5}$ moles 62%
0.155 mole $\mathrm{NH}_{4}{ }^{+}$after addition of the HCl
d) Calculate the $\mathbf{p H}$ of the solution after the addition of the $\mathbf{0 . 0 0 5 0 0}$ moles of $\mathbf{H C l}$.
$\mathbf{p H}=9.14 \quad 44 \%$
0.120 mole $\mathrm{NH}_{3} / 0.500 \mathrm{~L}=0.240 \mathrm{M} \mathrm{NH}_{3}$
$0.155 \mathrm{~mole}_{\mathrm{NH}}^{4}+\mathrm{+} / 0.500 \mathrm{~L}=0.310 \mathrm{M} \mathrm{NH}_{4}{ }^{+}$

$\mathrm{NH}_{3}(\mathrm{aq})$ +	$\mathrm{H}_{2} \mathrm{O}(\mathrm{l})$	\rightarrow	$\mathrm{NH}_{4}+(\mathrm{aq})+$	$\mathrm{OH}^{-}(\mathrm{aq})$	
\rightleftarrows			0.310	~ 0	
I	0.240			+x	+x
C	-x				
E	$0.240-\mathrm{x}$			$0.310+\mathrm{x}$	+x

$K_{b}=\left[\mathrm{NH}_{4}{ }^{+}\right]\left[\mathrm{OH}^{-}\right] /\left[\mathrm{NH}_{3}\right]$
$1.75 \times 10^{-5}=[0.310+x][x] /[0.240-x]$
assume $0.240-\mathrm{x}=0.240$
$1.75 \times 10^{-5}=[0.310][x] /[0.240]$
$1.35 \times 10^{-5}=[\mathrm{x}]=\left[\mathrm{OH}^{-}\right]$
The pOH of the solution is 4.87 , sothe pH is $14-4.87=9.13$.
e) Calculate the $\mathbf{p H}$ after adding $\mathbf{0 . 1 2 5}$ moles of $\mathbf{H C l}$ to the solution in Q1.
$\mathbf{p H}=4.76 \quad 31 \%$

	$\mathrm{NH}_{3}(\mathrm{aq})+$	$\mathrm{H}+(\mathrm{aq})$	\rightleftarrows	$\mathrm{NH}_{4}{ }^{+}(\mathrm{aq})+$
I	$\mathbf{0 . 1 2 5}$ moles	0.125 moles		0.150 moles
C	$-\mathbf{0 . 1 2 5}$ moles	$-\mathbf{0 . 1 2 5}$ moles		$+\mathbf{0 . 1 2 5}$ moles
E	$\mathbf{0}$ moles	$\mathbf{0}$ moles		0.275 moles

\qquad
0.275 mole $^{N_{4}}{ }_{4}{ }^{+} / 0.500 \mathrm{~L}=0.550 \mathrm{M} \mathrm{NH}_{4}{ }^{+}$

	$\mathrm{NH}_{4}{ }^{+}(\mathrm{aq})$	\rightleftarrows	$\mathrm{NH}_{3}(\mathrm{aq})+$
I		$\mathrm{H}^{+}(\mathrm{aq})$	
I	0.550		0
C	-x		+x
C		~ 0	
E	$0.550-\mathrm{x}$		+x

$\mathrm{K}_{\mathrm{a}}=\mathrm{K}_{\mathrm{w}} / \mathrm{K}_{\mathrm{b}}=1.0 \times 10^{-14} / 1.75 \times 10^{-5}=\left[\mathrm{NH}_{3}\right]\left[\mathrm{H}^{+}\right] /\left[\mathrm{NH}_{4}{ }^{+}\right]$
$5.71 \times 10^{-10}=[\mathrm{x}][\mathrm{x}] /[0.550-\mathrm{x}]$
assume $0.550-\mathrm{x}=0.550$
$5.71 \times 10^{-10}=[\mathrm{x}][\mathrm{x}] /[0.550]$
$3.14 \times 10^{-10}=\mathrm{x}^{2}=\left[\mathrm{H}^{+}\right]$
$1.77 \times 10^{-5} \mathrm{M}=\mathrm{x}=\left[\mathrm{H}^{+}\right]$
The pH of the solution is 4.75 .
2. Is there anything about the questions that you feel you do not understand? List your concerns/questions.
nothing
3. If there is one question you would like to have answered in lecture, what would that question be?
nothing

