This is BCE#25.

I recommend you print out this page and bring it to class. <u>Click here</u> to show a set of five BCE25 student responses randomly selected from all of the student responses thus far in a new window.

John , here are your responses to the BCE and the Expert's response.

1. Calculate the pH of a 500 mL solution containing 0.250 M NH3 and 0.300 MNH4NO3. Kb for NH3 is 1.8 x 10⁻⁵.12%pff=4.8

	NH3(aq) +	H ₂ O(l)	₹	NH ₄ +(aq) +	OH⁻(aq)
Ι	0.250			0.300	~0
C	-X			+x	+x
E	0.250 - x			0.300 + x	+x

9.18 56%

 $K_b = [NH_4^+][OH^-]/[NH_3]$

$$1.75 \ge 10^{-5} = [0.300 + x][x]/[0.250 - x]$$

assume 0.250 - x = 0.250

 $1.75 \ge 10^{-5} = [0.300][x]/[0.250]$

 $1.46 \ge 10^{-5} = [x] = [OH^{-1}]$

The pOH of the solution is 4.84, so the pH is 14 - 4.84 = 9.16.

b) Calculate the moles of NH_3 and NH_4^+ in the solution.

moles of $NH_3 = 0.125$ moles

75%

0.500 L (0.250 mole NH₃/1L) = 0.125 mole NH₃

7.5% moles of $NH_4^+ = 0.15$ moles

 $0.500 L (0.300 \text{ mole NH}_3/1L) = 0.150 \text{ mole NH}_4^+$

c) 0.00500 moles of HCl are added to the solution in Q1. After the addition, calculate the moles of NH_3 and NH_4^+ in the solution.

moles of $NH_3 = 0.12$ moles 62%

Since HCl reacts with NH₃ according to the reaction.

	NH ₃ (aq) +	H+(aq)	₹	$NH_4^+(aq) +$
Ι	0.125 moles	0.005 moles		0.150 moles
С	-0.005 moles	-0.005 moles		+0.005 moles
E	-0.120 moles	0 moles		0.155 moles

0.120 mole NH₃ after addition of the HCl

62% moles of $NH_4^+ = 0.155$ moles

0.155 mole NH₄⁺ after addition of the HCl

44%

d) Calculate the pH of the solution after the addition of the 0.00500 moles of HCl.

pH = 9.14

0.120 mole NH₃/0.500 L = 0.240 M NH₃

$0.155 \text{ mole NH}_4^+/0.500 \text{ L} = 0.310 \text{ M NH}_4^+$

	NH3(aq) +	H ₂ O(l)	₹	NH ₄ +(aq) +	OH ⁻ (aq)
Ι	0.240			0.310	~0
C	-X			+x	+x
E	0.240 - x			0.310 + x	+x

 $K_b = [NH_4^+][OH^-]/[NH_3]$

 $1.75 \ge 10^{-5} = [0.310 + x][x]/[0.240 - x]$

assume 0.240 - x = 0.240

 $1.75 \ge 10^{-5} = [0.310][x]/[0.240]$

 $1.35 \ge 10^{-5} = [x] = [OH^{-1}]$

The pOH of the solution is 4.87, so the pH is 14 - 4.87 = 9.13.

e) Calculate the pH after adding 0.125 moles of HCl to the solution in Q1.

 $pH = 4.76 \quad 3(\%)$

	NH ₃ (aq) +	H+(aq)	₹	$NH_4^+(aq) +$
Ι	0.125 moles	0.125 moles		0.150 moles
С	-0.125 moles	-0.125 moles		+0.125 moles
E	0 moles	0 moles		0.275 moles

0.275 mole NH₄⁺/0.500 L = 0.550 M NH₄⁺

	NH4 ⁺ (aq)	₹	NH ₃ (aq) +	H ⁺ (aq)
Ι	0.550		0	~0
C	-X		+x	+x
E	0.550 - x		+ x	+x

 $K_a = K_w/K_b = 1.0 \times 10^{-14}/1.75 \times 10^{-5} = [NH_3][H^+]/[NH_4^+]$

 $5.71 \ge 10^{-10} = [x][x]/[0.550 - x]$

assume 0.550 - x = 0.550

 $5.71 \ge 10^{-10} = [x][x]/[0.550]$

 $3.14 \ge 10^{-10} = x^2 = [H^+]$

 $1.77 \ge 10^{-5} M = x = [H^+]$

The pH of the solution is 4.75.

2. Is there anything about the questions that you feel you do not understand? List your concerns/questions.

nothing

3. If there is one question you would like to have answered in lecture, what would that question be?

nothing